HIGHLY SELECTIVE FORMATION OF LINEAR-CONJUGATED DIENOLATE ANIONS FROM CONJUGATED ENONES

Mituyosi KAWANISI, Yasuko ITOH, Takanori HIEDA, Sinpei KOZIMA, * †

Torazo HITOMI, † and Kazuko KOBAYASHI † †

Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Kyoto, 606

†Department of Chemistry, School of Liberal Arts & Sciences, Kyoto University, Kyoto, 606

^{††}Meiji College of Oriental Medicine, Hiyoshi, Funai-gun, Kyoto, 629-03

Treatment of conjugated enones having both α' - and γ -hydrogens with KN(SiMe $_3$) $_2$ (KHMSA) in a mixed solvent of DMF with THF at -78 $^{\rm O}$ C afforded preferentially linear-conjugated dienolate anions, which were trapped by methyl chloroformate to give the corresponding dienyl methyl carbonates.

Selective formation of cross-conjugated dienolate anions by α' -deprotonation of conjugated enones with lithium diisopropylamide (LDA) in tetrahydrofuran (THF) has been generally recognized. In contrast, not a few combinations of base and solvent were reported in order to generate linear-conjugated dienolates, i.e., $\text{Et}_3 \text{N/DMF}, ^3) + \text{t-BuOK/t-BuOH}, ^4) + \text{t-BuOK/DMF}, ^5) \text{ and } \text{Ph}_3 \text{CLi/THF}^6) \text{ for } 4\text{a-methyl-4,4a,5,6,7,8-hexahydro-2(3H)-naphthalenone} (4), \text{NaNH}_2/\text{liq.NH}_3^7) \text{ for } 3\text{-methyl-2-cyclohexen-1-one} (2), \text{ and } \text{Fe}(0)/\text{Et}_2 \text{O}^8) \text{ for } 3,5,5\text{-trimethyl-2-cyclohexen-1-one} (3).$ More recently there was reported a general procedure to obtain end- or exocyclic

Table 1. Preparation of dienyl methyl carbonates from conjugated enones

1	Entry	Enone	Base	Solvent	Product	(Y = CO	2 ^{Me)}	Yield/%	
1	•	= 0	-		⟨O Y	√>_0 Y			
1		1			7	8			
2	1	1	KHMSA	DMF · THF				34	
Second						25			
9 10 11 4 KHMSA DMF·THF 87 13 56 5 KHMSA DMF·THF ^{al} 96 4 44 6 KHMSA THF 64 18 17 25 7 LiHMSA DMF·THF 74 20 6 67 8 LDA THF >99 62 3 12 13 14 9 KHSMA DMF·THF 96 4 60 10 KHMSA THF 76 13 11 36 11 LiHMSA DMF·THF 96 4 70 12 LiHMSA DMF·THF 97 76 13 11 36 11 LiHMSA DMF·THF 97 76 13 11 36 11 LIHMSA DMF·THF 97 76 13 11 36 12 LIHMSA DMF·THF 97 76 13 11 36 14 LDA THF >99 63 15 LDA THF >99 63 16 KHMSA DMF·THF 84 16 34 15 LDA THF >99 39 16 KHMSA DMF·THF 84 16 34 17 LDA THF 16 84 50 18 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 19 07 20 18 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50	3		LDA	THF		>99		44	
9 10 11 4 KHMSA DMF·THF 87 13 56 5 KHMSA DMF·THF ^{al} 96 4 44 6 KHMSA THF 64 18 17 25 7 LiHMSA DMF·THF 74 20 6 67 8 LDA THF >99 62 3 12 13 14 9 KHSMA DMF·THF 96 4 60 10 KHMSA THF 76 13 11 36 11 LiHMSA DMF·THF 96 4 70 12 LiHMSA DMF·THF 97 76 13 11 36 11 LiHMSA DMF·THF 97 76 13 11 36 11 LIHMSA DMF·THF 97 76 13 11 36 12 LIHMSA DMF·THF 97 76 13 11 36 14 LDA THF >99 63 15 LDA THF >99 63 16 KHMSA DMF·THF 84 16 34 15 LDA THF >99 39 16 KHMSA DMF·THF 84 16 34 17 LDA THF 16 84 50 18 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 19 07 20 18 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50					OY	√			
## KHMSA DMF·THF 87 13 56 KHMSA DMF·THF 96 4 44 KHMSA THF 64 18 17 25 LiHMSA DMF·THF 74 20 6 67 LDA THF >99 62 ***THF 65 4 18 17 25 LUA THF >99 62 ***THF 66 4 18 17 25 **THF 74 20 6 67 LDA THF >99 62 ***THF 74 20 6 67 LDA THF >99 62 ***THF 74 20 6 67 LDA THF >99 62 ***THF 96 4 60 10 KHMSA THF 76 13 11 36 11 LiHMSA DMF·THF 93 7 70 12 LiHMSA THF 37 7 56 64 13 LDA THF >99 63 ***THF 76 13 11 36 LDA THF >99 63 ***THF 37 7 56 64 LDA THF >99 39 ***THF 84 16 34 15 LDA THF >99 39 ***THF 84 16 84 ***THF 17 0Y 18 0Y ***THF 99 52 LDA THF >99 39 16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 ***THF 16 84 50 ***TH) <u> </u>			<i>}//</i>	<u>}_/</u> /)=/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
5 KHMSA DMF·THFa) 96 4 44 6 KHMSA THF 64 18 17 25 7 LiHMSA DMF·THF 74 20 6 67 8 LDA THF >999 62	4	2	WIIMC A	DME MILE			11	5.6	
6 KHMSA THF 64 18 17 25 7 LiHMSA DMF·THF 74 20 6 67 8 LDA THF >99 62									
The second color of the							17		
S									
3									
3	•	V			1	J			
9 KHSMA DMF·THF 96 4 60 10 KHMSA THF 76 13 11 36 11 LiHMSA DMF·THF 93 7 70 12 LiHMSA THF 37 7 56 64 13 LDA THF >99 63 14 KHMSA DMF·THF 84 16 34 15 LDA THF >99 39 16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 18 KHMSA DMF·THF >99 25					Oγ ⟨	OY	OY		
10 KHMSA THF 76 13 11 36 11 LiHMSA DMF·THF 93 7 70 12 LiHMSA THF 37 7 56 64 13 LDA THF >99 63 14 KHMSA DMF·THF 84 16 34 15 LDA THF >99 39 16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 18 KHMSA DMF·THF >99 25		3			12	13	14		
11 LiHMSA DMF·THF 93 7 70 12 LiHMSA THF 37 7 56 64 13 LDA THF >99 63 14 KHMSA DMF·THF 84 16 34 15 LDA THF >99 39 16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 18 KHMSA DMF·THF >99 25	9		KHSMA	$\mathtt{DMF} \cdot \mathtt{THF}$	96	4		60	
Lihmsa Thf 37 7 56 64 13 LDA THF >99 63 14 KHMSA DMF·THF 84 16 34 15 LDA THF >99 39 16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 18 KHMSA DMF·THF >99 25	10		KHMSA	THF	76	13	11	36	
13 LDA THF >99 63 14 KHMSA DMF·THF 84 16 34 15 LDA THF >99 39 16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 18 KHMSA DMF·THF 16 84 50	11		LiHMSA	DMF·THF	93	7		70	
Y0 15 Y0 16 14 KHMSA DMF·THF 84 16 34 15 LDA THF >99 39 16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 18 KHMSA DMF·THF >99 25	12		LiHMSA	THF	37	7	56	64	
15 16 14 KHMSA DMF·THF 84 16 34 15 LDA THF >99 39 16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 18 KHMSA DMF·THF >99 25	13		LDA	THF			>99	63	
14 KHMSA DMF·THF 84 16 34 15 LDA THF >99 39 16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 18 KHMSA DMF·THF >99 25	0			YO		Y0 C			
15 LDA THF >99 39 16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 18 KHMSA DMF·THF >99 25	1.4	4	WIIMC D	DMD MIID				2.4	
16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 18 KHMSA DMF·THF >99 25					04				
5		· · · · · · · · · · · · · · · · · · ·	IJUA	1111					
16 KHMSA DMF·THF 99 52 17 LDA THF 16 84 50 19 20 18 KHMSA DMF·THF >99 25	/	50			17 0Y	18	OY		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16		KHMSA	$\mathtt{DMF} \cdot \mathtt{THF}$				52	
18 KHMSA DMF·THF >99 25			LDA	THF	16	84			
18 KHMSA DMF·THF >99 25		<u> </u>							
	18	Ŭ	KHMSA	DMF.THF				25	

a) The dienolate anions were trapped by chlorotrimethylsilane (Y = TMS).

linear-conjugated cyclohexadienolate anions selectively from conjugated cyclohexenones having 3-alkyl substituents by using an activated Fe(0)/MeMgBr/DME or $Fe(0)/Et_3N.^{9)}$ However, selective conversion of a simpler compound, 2-cyclohexen-1-one (1), into the linear-conjugated 1,3-cyclohexadienolate anion has never been presented. Recent communications by Krafft and Holton^{8,9)} prompted us to disclose an alternative and profitable method for the formation of linear-conjugated dienolate anions from the corresponding conjugated enone by treatment with potassium hexamethyldisilazanide (KHMSA) in a mixed solvent of DMF with THF.

A typical procedure is as follows: To a DMF THF (DMF 10 ml, THF 5 ml) solution of KHMSA (2.05 mmol) 10 , 11) was slowly added the relevant conjugated enone (2.00 mmol) at -78 $^{\circ}$ C with stirring, and the mixture was kept at -78 $^{\circ}$ C for 2 h. Soon after removing the dry ice-acetone bath, hexamethylphosphoric triamide (2 ml) and then methyl chloroformate (0.3 ml) were added to the mixture. The reaction mixture was kept at room temperature for 20 min, and was treated with pentane (10 ml) and a cold saturated aqueous solution of sodium hydrogen carbonate (20 ml, 0 $^{\circ}$ C). The dienyl methyl carbonates produced were separated from the pentane solution by elution chromatography (silica gel, hexame/AcOEt = 9/1), and the isomer ratios of the carbonates were analyzed by glc and 1 H-NMR spectroscopy. The results are summarized in Table 1. The dienyl carbonates were identified by 1 H and 13 C NMR spectroscopy. 12

Linear-conjugated 1,3-cyclohexadienolate anion could be formed exclusively from 1 with KHMSA/DMF·THF (entry 1). Predominant γ-deprotonation at the 3-methyl group in 2 and 3 with KHMSA/DMF·THF afforded the exocyclic linear-conjugated dienolate anions (entries 4, 5, and 9). Lower selectivity was observed with KHMSA/THF (entries 6 and 10) or lithium hexamethyldisilazanide (LiHMSA)/DMF·THF (entries 2, 7 and 11). Treatment of 4 and 5 with KHMSA/DMF·THF gave the linear-conjugated derivatives (entries 14 and 16). However, 1-acetyl-1-cyclohexene (6) was found to be an exceptional case; the linear-conjugated dienolate (19) was not detected in the product, but the cross-conjugated dienolate (20) was exclusively produced even with KHMSA/DMF·THF (entry 18). In all entries, the yields of the carbonates were not satisfactory. This is ascribed to the facile oligomerization of the conjugated enones, even though the reaction was carried out at -78 °C.

We have already shown that the dienyl methyl carbonates are promising precursors for organotin dienolates. 13 In view of the recent keen interests in generating the metal dienolates and their application in synthesis, 3,5,9,14 the

650 Chemistry Letters, 1985

present methodology provides the efficient means of forming linear-conjugated dienolate anions specifically.

References

- 1) G. M. Rubottom and J. M. Gruber, J. Org. Chem., 42, 1051 (1977).
- 2) C. Girard and J. M. Conia, Tetrahedron Lett., 1974, 3327.
- 3) I. Fleming, J. Goldhill, and I. Paterson, Tetrahedron Lett., 1979, 3205.
- 4) R. A. Lee, C. McAndrews, K. M. Patel, and W. Reusch, Tetrahedron Lett., $\underline{1973}$, 965.
- 5) J. Tsuji, I. Minami, and I. Shimizu, Tetrahedron Lett., 24, 1793 (1983).
- 6) R. A. Lee and W. Reusch, Tetrahedron Lett., 1973, 969.
- 7) M. S. Newman, V. DeVries, and R. Darlak, J. Org. Chem., 31, 2171 (1966).
- 8) M. E. Krafft and R. A. Holton, J. Org. Chem., 49, 3669 (1984).
- 9) M. E. Krafft and R. A. Holton, J. Am. Chem. Soc., 106, 7619 (1984).
- 10) KHMSA was prepared from KH and 1,1,1,3,3,3-hexamethyldisilazane in THF. $^{11)}$ The mixed solvent of DMF·THF (2:1) does not solidify at -78 $^{\circ}$ C.
- 11) C. A. Brown, Synthesis, 1974, 427.
- 12) Dienic and the other characteristic peaks in 1 H and 13 C NMR spectra (CDCl₂, 89.55 and 22.49 MHz) of the dienyl carbonates (7 -20) are given as follows. 7: ${}^{1}\text{H-NMR} \delta$ 5.54-6.00 (m, 3H); ${}^{13}\text{C-NMR} \delta$ 110.7 (d), 122.7 (d), 123.8 (d), 149.2 8: ${}^{1}\text{H-NMR}$ δ 5.46 (m, 1H), 5.63-6.07 (m, 2H); ${}^{13}\text{C-NMR}$ δ 110.7 (d), 122.5 (d), 129.4 (d), 146.2 (s). 9: 1 H-NMR $^{\delta}$ 4.80 (s, 2H), 5.98 (s, 1H); 13 C-NMR δ 111.6 (t), 117.5 (d), 141.4 (s), 151.4 (s). 10: 1 H-NMR δ 5.21-5.39 (m, 1H), 5.58 (s, 1H); ${}^{13}\text{C-NMR}$ δ 23.9 (q), 114.3 (d), 117.9 (d), 130.4 (s), 149.3 (s). ¹H-NMR δ 1.80 (s, 3H), 5.16-5.33 (m, 1H), 5.41-5.53 (m, 1H); ¹³C-NMR δ 23.0 (q), 107.5 (d), 117.3 (d), 139.6 (s), 146.7 (s). 12: 1 H-NMR δ 4.83 (s, 2H), 5.96 (s, 1H); 13 C-NMR δ 112.8 (t), 116.5 (d), 140.6 (s), 150.2 (s). 13: 1 H-NMR δ 5.40-5.47 (m, 1H), 5.52-5.60 (m, 1H); 13 C-NMR δ 113.0 (d), 116.5 (d), 129.9 (s). 14: 1 H-NMR δ 1.79 (s, 3H), 5.09 (s, 1H), 5.52 (m, 1H); 13 C-NMR δ 116.3 (d), 118.5 (d), 130.1 (s), 145.5 (s). 15: 1 H-NMR δ 5.37 (t, 1H), 5.75 13 C-NMR $^{\delta}$ 116.9 (d), 124.9 (d), 138.3 (s), 147.4 (s). 16: 1 H-NMR δ 5.18-5.47 (m, 1H), 5.39 (s, 1H). ¹³C-NMR δ 107.2 (d), 111.5 (d), 145.6 (s), 148.7 (s). 17: 1 H-NMR δ 4.88 (bs, 2H), 5.54 (s, 1H); 13 C-NMR δ 116.8 (t), 119.0 (d), 138.9 (s), 144.9 (s). 18: 1 H-NMR $^{\delta}$ 4.78 (s, 1H), 4.94 (s, 1H), 5.64 (bs, 1H); 13 C-NMR $^{\delta}$ 104.0 (t), 118.9 (d), 139.9 (s), 152.3 (s). 20: 1 H-NMR δ 4.77 (d, 1H), 4.90 (d, 1H), 5.91-6.09 (t, 1H); 13 C-NMR δ 99.7 (t), 126.1 (d), 130.1 (s), 130.5 (s).
- 13) T. Hieda, M. Kawanisi, K. Kobayashi, T. Hitomi, and S. Kozima, The 49th Annual Meeting of the Chemical Society of Japan (Tokyo), 2208 (1984).
- 14) a) Y. Hayashi, M. Nishizawa, and T. Sakan, Chem. Lett., 1975, 387; b) B. M.
 Trost and L. S. Melvin, Jr., J. Am. Chem. Soc., 98, 1204 (1976); c) A. Ishida
 and T. Mukaiyama, Bull. Chem. Soc. Japan, 50, 1161 (1977); d) I. Fleming, J.
 Goldhill, and I. Paterson, Tetrahedron Lett., 1979, 3209; e) J. E. McMurry and
 W. J. Scott, Tetrahedron Lett., 21, 4313 (1980).

(Received February 6, 1985)